Derivación e integración

Question 1 Top 1 Bottom Focus Help

Obtener la integral por Romberg de la función $f(x) = x^{-5}$ en el intervalo [1,4] dando el resultado con cuatro cifras decimales correctas. Entrar también con seis decimales correctos los valores solicitados de la tabla. You have not attempted this yet

The teacher's answer was:

Solution:

Usando la fórmula trapezoidal con 2^k subintervalos

$${T_0}^k = h \left(\frac{1}{2} f_0 + f_1 + \ldots + f_{2^{k-1}} + \frac{1}{-f_{2^k}} \right), \quad h = \frac{b-a}{2^k}, \quad f_i = f(x_i) \quad (2^k + 1 \text{ puntos }, k = 0, 1, 2, \ldots)$$

que también podemos poner como

$$T_0^k = \frac{b-a}{2^{k+1}} (f_0 + 2 f_1 + ... + 2 f_{2^{k-1}} + f_{2^k})$$

Esta fórmula tiene como error de truncamiento una expresión del tipo

$$\sum_{i=1}^{\infty} a_i h^{2i},$$

por lo que es posible aplicar la extrapolación de Richardson a un conjunto de estimaciones realizadas con esta regla, y esto constituye el método de integración de Romberg. Las diferentes estimaciones las haremos subdividiendo el intervalo de integración por 2, por lo que la estimación T_0^k que aparece anteriormente es la obtenida con 2^k aplicaciones de la regla del trapecio. Se ha visto que para calcular T_0^k podemos utilizar el valor T_0^{k-1} previamente calculado, de forma que solo necesitaríamos evaluar la función f en los 2^{k-1} puntos nuevos. Para obtener el resto de columnas aplicaremos la siguiente fórmula recurrente, tal como nos indica la fórmula general de la extrapolación de Richardson:

$$T_m^{\ k} = \frac{4^m \quad T_{m-1}^{\ k+1} - T_{m-1}^{\ k}}{4^m - 1} = T_{m-1}^{\ k+1} + \frac{T_{m-1}^{\ k+1} - T_{m-1}^{\ k}}{4^m - 1}, \quad \text{para k=0,1, ...} \quad m=1,2, ...$$

La tabla resultante es:

INTEGRACIÓN DE ROMBERG								
h	${T_0}^i$	${T_1}^i$	T_2^{i}	T_3^i	${\rm T_4}^{\rm i}$	${T_5}^i$	${{T_6}^i}$	${\rm T_7}^{\rm i}$
3.00000000	1.50146484							
1.50000000	0.76609242	0.52096828						
0.75000000	0.43080990	0.31904907	0.30558778					
0.37500000	0.30286640	0.26021857	0.25629654	0.25551414				
0.18750000	0.26332769	0.25014812	0.24947675	0.24936850	0.24934440			
0.09375000	0.25266245	0.24910738	0.24903799	0.24903103	0.24902971	0.24902940		
0.04687500	0.24993734	0.24902897	0.24902374	0.24902351	0.24902348	0.24902348	0.24902348	
0.02343750	0.24925218	0.24902379	0.24902344	0.24902344	0.24902344	0.24902344	0.24902344	0.24902344

Siguiendo el mismo criterio que se ha usado para la extrapolación de Richardson en diferenciación numérica, la convergencia se produjo al calcular la linea 6, ya que $|{T_6}^6$ - ${T_5}^5|$ =|.24902347598797468176 - (.24902939830239984469)| = .592231442516293e-5 < .1e-3

1 of 2 04/04/2011 08:42 PM

Romberg puede resultar costoso desde el punto de vista computacional si se quiere obtener una precisión alta, ya que el número de puntos a considerar se duplica entre dos estimaciones sucesivas por la regla trapezoidal. Sin embargo, tiene convergencia lineal, por lo que la mejora obtenida en la precisión de un dígito decimal a lo sumo no justifica el aumento del número de puntos en que es necesario evaluar la función a integrar. Como en cada nueva estimación se divide el paso h anterior por 2, los pasos h_n considerados en Romberg son:

 $h_0 = b - a$, $h_1 = h_0/2$, $h_2 = h_1/2 = h_0/4$, $h_3 = h_2/2 = h_0/8$, $h_4 = h_0/16$, $h_5 = h_0/32$ etc.

Otra posible elección de los valores de h la ha propuesto R. Bulirsch (Numerische Mathematik 6, 6-16, 1964):

 $h_0 = b - a$, $h_1 = h_0/2$, $h_2 = h_0/3$, $h_3 = h_0/4$, $h_4 = h_0/6$, $h_5 = h_0/8$, $h_6 = h_0/12$, $h_7 = h_0/16$, etc.

que tiene la ventaja de que el cálculo requerido para obtener las estimaciones por la trapezoidal aumenta de forma más lenta.

Los denominadores d_n de las $h_n = [(b-a)/(d_n)]$ (donde $d_n = 1,2,3,4,6,8,12,16,24,...$) son los enteros de la forma 2^k y $3(2^k)$, de forma que todas las evaluaciones del integrando se usan en el cálculo de las sumas trapezoidales posteriores. Una implementación en Algol 60 se puede encontrar en Bulirsch-Stoer (*Numer. Math.* **9**, 271-278, 1967). J. Oliver (*Numer. Math.* **17**, 17-32, 1971) recomienda esta elección como óptima.

(cc) Jesús García Quesada 2011

Mark summary:

Question	Value	Your mark
1	3.00	-
Total	3.00	0.00

New Version Click here to see a new version of this quiz.

New Quiz Click here to select a new quiz.

If you have technical problems, you can send email to the <u>administrator</u>. Mathematical questions can be sent to the <u>teacher</u>.

2 of 2 04/04/2011 08:42 PM